No products in the cart.
Course Content
Section 1. Introduction
-
00:00
-
00:00
-
00:00
Section 2. Data Science and Machine Learning
-
Recommender System Using
00:00 -
Data Science vs Machine Learning vs Artificial Intelligence
00:00 -
Summarizing It All
00:00
Section 3. AI Project Life Cycle
-
AI Project Framework
00:00 -
Step 1 Problem Definition
00:00 -
Step 2 Data
00:00 -
Step 3 Evaluation
00:00 -
Step 4 Features
00:00 -
Step 5 Modelling
00:00 -
Step 5 Data Validation
00:00 -
Step 6 Course Correction
00:00 -
Tools Needed for AI Project
00:00
Section 4. Python the Most Powerful Language
-
What is Programming Language
00:00 -
Python Interpreter and First Code
00:00 -
Python 3 vs Python 2
00:00 -
Formula to Learn Coding
00:00 -
Data Types and Basic Arithmetic
00:00 -
Basic Arithmetic Part 2
00:00 -
Rule of Programming
00:00
Section 5. Python the Most Powerful Language Part 02
-
Mathematical Operators and Order of Precedence
00:00 -
Variables and Their BIG No No
00:00 -
Statement vs Expression
00:00 -
Augmented Assignment Operator
00:00 -
String Data Type
00:00 -
String Concatenation
00:00 -
Type Conversion
00:00 -
String Formatting
00:00 -
Indexing
00:00
Section 6. Python the Most Powerful Language Part 03
-
Immutability
00:00 -
Built-in Function and Methods
00:00 -
Boolean Data Type
00:00 -
Exercise (Skipped – No Video Link)
00:00 -
Data Structure and Lists
00:00 -
Lists Continued
00:00 -
Matrix from Lists
00:00 -
List Methods
00:00 -
List Methods 2
00:00
Section 7. Python the Most Powerful Language Part 04
-
Creating Lists Programmatically
00:00 -
AND OR Keywords
00:00 -
If Else Statement
00:00 -
Intro to Process of Coding Conditionals
00:00 -
Sets Data Types
00:00 -
Tuple Data Types
00:00 -
Most Used Methods on Dictionaries
00:00 -
Dictionary Key is Unchangeable
00:00 -
Dictionary
00:00 -
Boolean Result of Different Values
00:00
Section 8. Python the Most Powerful Language Part 05
-
Logical Operators
00:00 -
Identity Operator
00:00 -
For Loop and Iterables
00:00 -
Nested For Loop
00:00 -
Exercise For Loop (Skipped – No Video Link)
00:00 -
Range Function
00:00 -
While Loop
00:00 -
Continue Break Pass Keywords
00:00 -
Exercise Draw a Shape (Skipped – No Video Link)
00:00
Section 9. Python Part-2
-
Functions
00:00 -
Scope of a Function
00:00 -
Exercise (Skipped – No Video Link)
00:00 -
Args and Kwargs
00:00 -
Good Programming Practices
00:00 -
Doc String
00:00 -
Return Keyword
00:00 -
Default Parameters
00:00 -
Parameter vs Argument
00:00 -
Why of Functions
00:00 -
Scope Rules 1
00:00
Section 10. Python Part-3
-
Scope Rules 2
00:00 -
Python Modules
00:00 -
Sets and Dictionary Comprehension
00:00 -
List Comprehension Case 1, 2, and 3
00:00 -
Special Functions Reduce
00:00 -
Special Functions Zip
00:00 -
Special Functions Filter
00:00 -
Special Functions Map
00:00 -
Programming Best Practices 2
00:00 -
Global vs Nonlocal Keywords
00:00 -
Python Packages
00:00
Section 11. Environment Setup for Machine Learning Projects
-
Who is Mr. Conda
00:00 -
Loading and Visualizing Data
00:00 -
Walkthrough of Jupyter Notebook 2
00:00 -
Walkthrough of Jupyter Notebook 1
00:00 -
Installing for MacOS and Linux
00:00 -
Starting Jupyter Notebook
00:00 -
Installing Tools
00:00 -
Installing Conda
00:00 -
Blueprint of Machine Learning Project
00:00 -
Setting Up Machine Learning Project
00:00 -
Tools for Data Science Environment
00:00 -
Summing It Up
00:00
Section 12. Pandas for Data Analysis
-
Tools Needed
00:00 -
Add Remove Data
00:00 -
Changing Data
00:00 -
Data Selection 2
00:00 -
Data Selection
00:00 -
Describing Data
00:00 -
How to Import Data
00:00 -
Data Frames
00:00 -
Pandas and What We Will Cover
00:00 -
Manipulating Data
00:00
Section 13. NumPy
-
What and Why of NumPy
00:00 -
NumPy Array
00:00 -
Shape of Array
00:00 -
Important Functions on Arrays
00:00 -
Creating NumPy Array
00:00 -
Random Seed
00:00 -
Accessing Elements
00:00 -
Array Manipulation
00:00 -
Aggregations
00:00
Section 14. NumPy Part 02
-
Mean, Variance and STD
00:00 -
Dot Product vs Matrix Manipulation
00:00 -
Dot Product
00:00 -
Reshape and Transpose
00:00 -
Exercise (Skipped – No Video Link)
00:00 -
Comparison Operators
00:00 -
Sorting Arrays
00:00 -
Reading Images
00:00
Section 15. Matplotlib
-
Matplotlib Intro
00:00 -
Pandas Data Frame
00:00 -
Four Plots One Figure
00:00 -
Histogram
00:00 -
Most Used Plots (Bar Plot)
00:00 -
One Figure Many Plots
00:00 -
Setting Up Features
00:00 -
Methods to Plot
00:00 -
First Plot with Matplotlib
00:00 -
Plotting from Pandas Data Frame
00:00
Section 16. Matplotlib Part 02
-
Plotting from Pandas Data Frame
00:00 -
Bar Plot from Pandas Data Frame
00:00 -
Pyplot vs OO Methods
00:00 -
Life Cycle of OO Method
00:00 -
Life Cycle of OO Method Advanced
00:00 -
Customization Part 2
00:00 -
Customization Part 3
00:00 -
Figure Styling
00:00 -
Naming Entire Figure
00:00
Section 17. Scikit-Learn
-
What Actually ML Model Is
00:00 -
Intro to Sklearn
00:00 -
Step 1 Getting Data Ready (Split Data)
00:00 -
Step 2 Choosing ML Model
00:00 -
Step 3 Fit Model
00:00 -
Step 4 Evaluate Model
00:00 -
Step 5 Improve Model
00:00 -
Step 6 Save Model
00:00
Section 18. Scikit-Learn Part 02
-
What We Are Going to Do
00:00 -
Using Map to Choose Model
00:00 -
Choosing Machine Learning Model
00:00 -
Getting Data (Missing Values Method 2)
00:00 -
Getting Data (Missing Values)
00:00 -
Getting Data (Second Method of Conversion)
00:00 -
Getting Data (Anatomy of Conversion)
00:00 -
Getting Data Ready Converting Part 1
00:00 -
Step 1 Getting Data Split Data
00:00 -
Step 2 How to Choose Better Model
00:00
Section 19. Scikit-Learn Part 03
-
Choosing Model for Classification Problem
00:00 -
Step 4 Area Under the Curve Part 1
00:00 -
Step 4 Accuracy (Classification Model)
00:00 -
Step 4 What is Cross Validation
00:00 -
Step 4 Evaluating Machine Learning Model (Default Scoring)
00:00 -
Step 3 Running Prediction on Regression Problem
00:00 -
Step 3 Predict Proba Method
00:00 -
Running Prediction
00:00 -
Fit the Model
00:00 -
Step 4 Area Under the Curve Part 2
00:00
Section 20. Scikit-Learn Part 04
-
Step 4 Area Under the Curve Part 3 (Plotting)
00:00 -
Step 4 Evaluation Using Functions (Classification)
00:00 -
Step 4 Scoring Parameters for Regression
00:00 -
Step 4 Scoring Parameters for Classification
00:00 -
Step 4 Mean Square Error for Regression Problems
00:00 -
Step 4 Mean Absolute Error for Regression Problems
00:00 -
Step 4 R2 for Regression Problems
00:00 -
Step 4 Classification Report Fully Explained
00:00 -
Step 4 Classification Report (Important Concepts)
00:00 -
Step 4 Confusion Matrix Plot
00:00 -
Confusion Matrix Calculate
00:00 -
Step 4 Evaluation Using Functions (Regression)
00:00
Section 21. Scikit-Learn Part 05
-
Step 5 Improving Model by Hyperparameters
00:00 -
Step 5 Improving Model by Hyperparameters Manually
00:00 -
Step 5 Hyperparameters Task 1
00:00 -
Step 5 Evaluation Metrics in One Function
00:00 -
Step 5 Hyperparameters Comparison
00:00 -
Tuning Hyperparameters Using RSCV
00:00 -
Tuning Hyperparameters Using RSCV Part 2
00:00 -
Tuning Hyperparameters Using GSCV
00:00 -
Results Comparison
00:00
Section 22. Scikit-Learn Part 06
-
Save Load Model with Pickle Method 1
00:00 -
Save Load Model with Joblib Method 2
00:00 -
Building Entire Model Using Pipeline Part 1
00:00 -
Building Entire Model Using Pipeline Part 2
00:00 -
Building Entire Model Using Pipeline Part 3
00:00 -
Building Entire Model Using Pipeline Part 4
00:00
Section 23. Project 1 Part 01
-
Milestone Project 1 Intro
00:00 -
Chest Pain Type and Target Relation Part 2
00:00 -
Chest Pain Type and Target Relation Part 1
00:00 -
Age Distribution
00:00 -
Scatter Plot to See Any Pattern
00:00 -
Be Careful with Plot Choice
00:00 -
Exploratory Data Analysis Part 2
00:00 -
Exploratory Data Analysis Part 1
00:00 -
Importing Tools and Libraries
00:00 -
Data Features Recognition
00:00 -
First 4 Steps
00:00 -
Creating Project Environment
00:00 -
Correlation Matrix Part 1
00:00
Section 24. Project 1 Part 02
-
Plotting Correlation Matrix Part 2
00:00 -
Modelling Split the Data
00:00 -
Choosing the Right Model
00:00 -
Improving Model
00:00 -
Plotting the Improved Model Score
00:00 -
Hyperparameter Tuning Using GSCV
00:00 -
Hyperparameters for RandomForestClassifier
00:00 -
Running the Model with Hyperparameters Using GSCV
00:00 -
Score Comparison After Tuning
00:00
Section 25. Project 1 Part 03
-
Hyperparameters Tuning Using Grid Search CV
00:00 -
Summarizing
00:00 -
What Have We Learnt
00:00 -
Area Under the Curve and Confusion Matrix
00:00 -
Plot the Classification Report
00:00 -
Let’s See If Cross Validation Layers Help Us
00:00 -
Visualizing Cross Validation Score
00:00 -
Features Improvement
00:00 -
Conclusion
00:00
Eaxm
-
Eaxm
